Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5429-5443, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439270

RESUMO

Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.


Assuntos
Amebozoários , Mixomicetos , Nanoestruturas , Cálcio , Fótons
2.
Soft Matter ; 20(11): 2509-2517, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38389437

RESUMO

While artificial photonic materials are typically highly ordered, photonic structures in many species of birds and insects do not possess a long-range order. Studying their order-disorder interplay sheds light on the origin of the photonic band gap. Here, we investigated the scale morphology of the Anoplophora graafi longhorn beetle. Combining small-angle X-ray scattering and slice-and-view FIB-SEM tomography with molecular dynamics and optical simulations, we characterised the chitin sphere assemblies within blue and green A. graafi scales. The low volume fraction of spheres and the number of their nearest neighbours are incompatible with any known close-packed sphere morphology. A short-range diamond lattice with long-range disorder best describes the sphere assembly, which will inspire the development of new colloid-based photonic materials.


Assuntos
Besouros , Animais , Besouros/química , Fótons
3.
Nat Mater ; 23(1): 124-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884672

RESUMO

Bicontinuous microstructures are essential to the function of diverse natural and synthetic systems. Their synthesis has been based on two approaches: arrested phase separation or self-assembly of block copolymers. The former is attractive for its chemical simplicity and the latter, for its thermodynamic robustness. Here we introduce elastic microphase separation (EMPS) as an alternative approach to make bicontinuous microstructures. Conceptually, EMPS balances the molecular-scale forces that drive demixing with large-scale elasticity to encode a thermodynamic length scale. This process features a continuous phase transition, reversible without hysteresis. Practically, EMPS is triggered by simply supersaturating an elastomeric matrix with a liquid, resulting in uniform bicontinuous materials with a well-defined microscopic length scale tuned by the matrix stiffness. The versatility of EMPS is further demonstrated by fabricating bicontinuous materials with superior mechanical properties and controlled anisotropy and microstructural gradients. Overall, EMPS presents a robust alternative for the bulk fabrication of homogeneous bicontinuous materials.

4.
Soft Matter ; 19(24): 4470-4482, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37272164

RESUMO

Squids have spherical, gradient index lenses that maximize optical sensitivity while minimizing light scattering and geometric aberration. Previous studies have shown that the constituent lens proteins behave like patchy particles, and that a density gradient of packing fraction ∼0.01 to 1 assembles from a gradient of average particle valence, 〈M〉 ≈ 2.1 to 〈M〉 > 6. A priori, transparency requires that all regions within the larger gradient must minimize density fluctuations at length scales close to the wavelength of visible light. It is not known how a material can achieve this at all possible packing fractions via attractive interactions. We also observe that the set of proteins making the lens is remarkably polydisperse (there are around 40 isoforms expressed). Why does nature employ so many geometrically similar isoforms when theory suggests a few would suffice, and what, if any, is the physical role of the polydispersity? This study focuses on answering these questions for the sparsest regions of the lens, where the patchy nature of the system will have the largest influence on the final structure. We first simulated mixtures of bi- and trivalent patchy particles and found a strong influence of patch angle on the percolation and gel structure of the system. We then investigated the influence of the interaction polydispersity on the structure of the M = 2.1 system. We find that increasing the variance in patch energies and single-patch angle appears to decrease the length scale of density fluctuations while also moving the percolation line to lower temperature. S-Crystallin geometry and polydispersity appear to promote regular percolation of a gel structure while also limiting density fluctuations to small length scales, thereby promoting transparency in the annealed structure.

5.
Small ; 19(6): e2205438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464635

RESUMO

Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.

6.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722094

RESUMO

Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga δ FeN layers with Fe y N embedded nanocrystals (NCs) via Al x Ga 1 - x N buffers with different Al concentration 0 < x Al < 41 % is presented. Through the addition of Al to the buffer, the formation of predominantly prolate-shaped ε -Fe 3 N NCs takes place. Already at an Al concentration x Al ≈ 5% the structural properties-phase, shape, orientation-as well as the spatial distribution of the embedded NCs are modified in comparison to those grown on a GaN buffer. Although the magnetic easy axis of the cubic γ '-Ga y Fe 4 - y N nanocrystals in the layer on the x Al = 0 % buffer lies in-plane, the easy axis of the ε -Fe 3 N NCs in all samples with Al x Ga 1 - x N buffers coincides with the [ 0001 ] growth direction, leading to a sizeable out-of-plane magnetic anisotropy and opening wide perspectives for perpendicular recording based on nitride-based magnetic nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...